Let’'s Cooperate

File system-based

synchronisation primitives

by Primoz Gabrijelcic

Every serious Windows pro-
grammer who has developed
at least one multi-threaded appli-
cation knows about thread syn-
chronisation. You know what I
mean: critical sections, mutexes,
semaphores, signals and so on.
Those synchronisation primitives
are important tools for building
complex, multi-threaded applica-
tions. But to write truly distributed
applications, running on different
computers, we need new tools.
Standard Windows synchronisa-
tion primitives only work within
one computer: they won’t help us
when synchronising processes on
many computers, which are most
probably running different operat-
ing systems too.

Obviously we need a new set of
tools, synchronisation primitives
for a network environment, but
what should we base them on?
Sockets (TCP or UDP) are a nice
idea, but there is probably a sim-
pler solution: the file system. Yes,
we can use good old methods like
locked files and with the help of a
decent file server breathe new life
into these techniques. (I'll talk
more about this later, but for the
curious reader I'll mention that
Windows NT is ‘decent’ enough in
our context and even Windows 9x
would do the job.)

Before we move on, remember
one thing: file-based synchronisa-
tion is slow. Extremely slow. Your
application could calculate a few

0 Listing 1: Ancestor of all file
synchronisation objects.

TGpFileSynchroObject = class
private
fsoFileName : string;
fsoRetryDelay: integer;
protected

hundred thousand prime numbers
while it is waiting on a mutex to be
acquired. That slow. So please try
to remember that, and use these
primitives as little as possible.

If you don’t know that much
about classical synchronisation
primitives, you can read more
about them in The Delphi Maga-
zine: Happiness Is An Option (Issue
55) and Sharing Data With The
Win32 API (Issue 17). I would also
recommend the book Advanced
Windows by Jeffrey Richter, which
covers many other important
Windows topics too. Or maybe
Operating System Principles by Per
Brinch Hansen, if you can get your
hands on it: it’s an oldie, but a
goldie too. As we’ll also implement
a message-passing class, you may
want to check up on on standard
Win32 mechanisms in this area,
too. Recommended reading is
again Richter’s book or the Win32
Inter-Process Communication arti-
cle from Issue 50.

A Decent File Server

[already mentioned that we need a
decent file server. Luckily, almost
anything you will encounter will be
good enough. For example, the file
server has to allow us to work with
exclusive access or in shared-read
mode (ie, many processes can read
the file at the same time). OK, that
is not a problem. More important is
that the file server should release
an exclusively opened file after
some time if our process (the one
that was keeping the file open)
dies. These requirements are not

constructor Create(syncFile: string; alwaysCheckForWriteAcc: boolean);
procedure CheckForWriteAccess(folder: string);
function Elapsed(start: int64; timeout: DWORD): boolean;

public

property RetryDelay: integer read fsoRetryDelay write fsoRetryDelay;
property SyncFile: string read fsoFileName;

end; { TGpFileSynchroObject }

50

The Delphi Magazine

too onerous and any network oper-
ating system (eg Windows NT,
Netware and Unix) should satisfy
them. [say ‘should’ as this code
was only tested on Windows NT
and 2000. If you will be using other
platforms, test long and test well
before you depend on my code.
However, 'm working on porting
this code to Linux, using Kylix of
course, and will report back on
that project soon!

Let the coding begin. Standard
texts on synchronisation primi-
tives almost exclusively start with
critical sections. There is a good
reason for that: critical sections in
the Win32 environment work only
within one process and, because of
that, they are simple to explain and
use. As we will focus on the net-
worked environment, single pro-
cess solutions are not important to
us and we’ll start with a file-based
mutex. After that, we’ll develop a
file-based critical section (a simpli-
fication of a file-based mutex), a
file-based group (a non-standard
but very useful primitive), a
file-based event and a file-based
message. Finally, I'll discuss some
advanced topics: semaphores and
single writer multiple reader
guards.

A File-Based Mutex

We’ll derive all our file-based syn-
chronisation classes from the
parent class TGpFileSynchroObject
(Listing 1). Besides some functions
which are used in all the derived
classes, it exposes two public
properties: the name of the file
used for synchronisation pur-
poses and the retry delay. We need
the latter because all our file-based
synchronisation objects will peri-
odically check if some condition is
satisfied. Between checks, they
will sleep for RetryDelay millisec-
onds (100 by default).

And now to our mutex. Basically,
amutex is a token that can only be
owned by one process at atime. To
work on critical (shared) data, a
process takes the token (acquires
the mutex) and when it is finished,
it returns the token (releases the
mutex). For safety reasons, all
owned mutexes must automati-
cally be released when the process

Issue 68

terminates (whether normally or
abnormally) or if the computer
that is running the process crashes
or is disconnected from network
(and with that from other pro-
cesses). As you may have expected
from my introduction, a simple file
satisfies all these needs. If we open
it in read-only deny-all mode, we
have acquired the mutex. When we
closeit, the mutexis released. Only
one process at a time can own the
mutex (file) because of the deny-all
mode (that tells the file server
nobody else may open the file
while we’re working on it).

Because we’ll be opening the
mutex in read-only mode, we can
make the mutex file read-only or
we can even protect the folder with
the mutex file in so that no ordi-
nary user can write into it. Of
course, our file-based mutex object
cannot create a mutex file in that
case. Some other program (maybe
a configuration or installation pro-
gram running with administrative
rights) must create this file in
advance. The file-based mutex
therefore allows us to design clean
solutions where clients only
require read access to the shared
folder and only one program, used
by the administrator, requires
write access to this folder.

Let’s take a quick look at a class
to encapsulate our file-based
mutex: TGpFileMutex (Listing 2).
The constructor stores the mutex
file name in a local variable and
sets the ‘delete on release’ flag.
Setting this flag to true specifies
that the mutex file must be deleted
when released. Of course, the pro-
cess owning the mutex must have
enoughrights to thefile and folder.

The most important method in
the TGpFileMutex class is Acquire. It
tries to acquire the mutex for at
most timeout milliseconds and
returns true if the mutex was suc-
cessfully acquired, falseif not, and
EGpFileSync exception on illegal
use (which implies programming
error). Timeout can be set to 0 for no
waiting or INFINITE (declared in
Windows.pas) for endless waiting.

Other methods are simpler.
Acquired checks if the mutex is
already acquired and Release
releases it (or, if the mutex is not

April 2001

TGpFileMutex =
private
fmDelete: boolean;
fmHandle: THandle;
public
constructor Create(syncFile: string; deleteOnRele
reintroduce;

class(TGpFileSynchroObject)

destructor Destroy; override;

function Acquire(timeout: DWORD): boolean;
function Acquired: boolean;

function IsFree(timeout: DWORD): boolean;

procedure Release;
end; { TGpFileMutex }

O Listing 2: File-based mutex.

function TGpFileMutex.Acquire(timeout: DWORD): bool
var

flag : DWORD;

err : DWORD;

start: int64;
begin

if Acquired then
raise EGpFileSync.CreateFmt(SAlreadyAcquired,[S
else begin
flag := FILE_ATTRIBUTE_NORMAL;
if fmDelete then
flag := flag OR FILE_FLAG_DELETE_ON_CLOSE;
start := GetTickCount;
repeat
fmHandle
flag,0);
if fmHandle = INVALID_HANDLE_VALUE then begin
err := GetlLastError;
if err in FILE_SHARING_ERRORS then
Sleep(RetryDelay)
else
raise EGpFileSync.CreateFmt(SCannotAccess
[SyncFile,SysErrorMessage(err)1);
end else
err := 0;
until (err = 0) or Elapsed(start,timeout);
Result := (err = 0);
end

end; { TGpFileMutex.Acquire }

0 Listing 3: Acquiring a mutex.

acquired, raises the EGpFileSync
exception). The destructor checks
if the mutex is acquired and, if so,
releases it.

The IsFree method is a helper
function that checks whether the
mutex is available. It does that
by acquiring and immediately
releasing it. If the mutex cannot be
acquired it is not available. We’ll
use this helper later, when we
implement the single writer multi-
ple reader guard and mutex moni-
toring components.

Mutex Explained d
Let’s now take a detailed look at
how TGpFileMutex.Acquire oper-
ates (see the flowchart in Figure 1
and implementation in Listing 3).

First, check if the mutex is
already acquired (by calling
Acquired). If so, treat this as a
programmer error and raise the
EGpFileSync exception.

Next, check if the ‘delete on
release’ flag is set. If so, open the

The Delphi Magazine

ase: boolean =

ean;

yncFilel)

File,

false);

:= CreateFile(PChar(SyncFile),GENERIC_READ,O0,ni1,0PEN_ALWAYS,

T

return(true)

F

Delete on

T-»]
release?

flags :=
FILE_FLAG_DEL
ETE_ON_CLOSE

CreateFile(GENE
RIC_READ,
OPEN_ALWAYS,
flags)

F

open OK? T

return(true)

=

file sharing
error?

raise exception

return(false)

U
4"""'.')——r+
F
v

sleep

0 Figure 1: Acquiring a mutex.

51

file with FILE_FLAG_DELETE_ON_
CLOSE flag set. This tells Windows
that the file should be deleted
when closed.

Now try to open the file with
GENERIC_READ (read-only) access,
sharing mode 0 (deny all) and
OPEN_ALWAYS creation disposition
(open existing file or create new).

If CreateFile succeeded the
mutex is acquired: leave the file
open and return true. If CreateFile
failed with something other than a
sharing error (ERROR_SHARING_VIO-
LATION or ERROR_LOCK_VIOLATION),
treat this as a programmer error
(the file name is invalid, folder
does not exist, or similar) and raise
the EGpFileSync exception.

Next, check if the allotted time
has elapsed. If so, return false and
exit. Otherwise, sleep for Retry-
Delay milliseconds and try again to

0 Listing 4: Synchronising access
to a shared resource with
TFileMutex.

procedure MutexDemo;
var

fileMutex: TGpFileMutex;
begin

open the file, following the proce-
dure through just as before.
Releaseis simpler:it checksifthe
mutex is acquired (raising the
EGpFileSync exception if not) and
closes the mutex file. Acquired just
checks if the mutex file is open.
To use the mutex for synchroni-
sation (for example, to access a
shared resource), first Acquire it
and at the end Release it. Always
treat the file mutex as a critical
resource and put all access to the
shared resource inside a try..
finally block. Listing 4 shows a
simple demonstration of synchro-
nisation with TGpFileMutex.

Critical Section

[already mentioned that critical
sections as an inter-process mech-
anism don’t really apply to our
multi-computer environment.
However, it can be quite helpful to
have a class that looks and works
just like Delphi’s TCriticalSection.
So I built a simple descendant

fileMutex := TGpFileMutex.Create('c:\test.lck');

try
if fileMutex.Acquire(1000) then
try
// work with shared resource
finally fileMutex.Release; end

se
// failed to access shared resource

except
on E: EGpFileSync do
// report error
end;
end; { MutexDemo }

0 Listing 5: File-based critical section.

TGpFileCriticalSection = class(TGpFileMutex)

private
nestCount: integer;
public
procedure Acquire; reintroduce;
procedure Enter;
procedure Leave;
procedure Release; reintroduce;
end; { TGpFileCriticalSection }

0 Listing 6: Implementation of TGpFileCriticalSection.Acquire

and TGpfFileCriticalSection.Release.

procedure TGpFileCriticalSection.Acquire;

begin
if nestCount = 0 then
inherited Acquire(INFINITE);
Inc(nestCount);

end; { TGpFileCriticalSection.Acquire }
procedure TGpFileCriticalSection.Release;

begin
Dec(nestCount);
if nestCount <= 0 then
inherited Release;

end; { TGpFileCriticalSection.Release }

52

The Delphi Magazine

of TGpFileMutex called TGpFile-
CriticalSection (Listing 5).
Basically, it creates wrappers for
the Acquire and Release functions
and adds the aliases Enter and
Leave. With an additional twist, you
can nest Enter and Leave calls, just
as in the equivalent TCritical-
Section methods. This allows for
an easier transition from existing
code using TCriticalSection or
Windows’ critical sections.

Let me explain this. TGpFileMutex
takes care that you don’t call
Acquire twice in a row, like this:

fml.Acquire(0);
fml.Acquire(0);
fml.Release;
fml.Release

This may force us to think a little
more about how we will acquire it,
but makes it behave like standard
Windows mutex. Critical sections
in Windows behave differently:
you can enter a critical section
while you are already in it. In
TGpFileCriticalSectionterms, you
can use a critical section in the
following manner:

csl.Enter;
csl.Enter;
csl.lLeave;
csl.Leave;

Of course, only the last csl.Leave
actually leaves the critical section.
To implement this, TGpCritical-
Section uses a private nesting
counter, which counts how many
Enter calls are not yet matched
with corresponding Leave calls.
TGpCriticalSection.Acquire (or
Enter, the alias for it) will only call
inherited Acquire(INFINITE) if the
nesting count is zero. Similarly,
TGpCriticalSection.Release (or
Leave) will only call inherited
Release when nesting count drops
to zero. Acquire and Release are
shown in Listing 6.
TGpFileCriticalSection can be
useful for quick and dirty pro-
grams and internal solutions. Just
don’t use it in real-world applica-
tions, as it doesn’t offer an option
to limit the duration of Acquire. A
commercial application that locks
indefinitely is a very bad ideal

Issue 68

Group: A Global Pool

So, should we start writing a file-
based semaphore now? No! While
the mutex and critical section are
quite simple to implement using
the file system, a semaphore is not.
I'll discuss this later, but for now
just believe me: writing a file-based
semaphore is a tough job.

Rather than that, I'll implement
something simpler and almost as
useful: a group. I must warn you, a
group as presented here is entirely
my invention. I don’t know if there
is any well-established definition
or implementation of a group, so |
made my own.

In this article I'll define a group
as a pool of processes. Processes
may join or leave the group. There
can be an unlimited number of
processes in the group, or the
group may be empty. We can’t tell
how many processes are in the
group, only if it’s empty or not.

TGpFileGroup (Listing 7) encap-
sulates that behaviour: the owner
can Join the group and Leave it. On
Join, TGpFileGroup will set a flag if
we are the first process to enter the
group. On Leave, the flag will be set

U Figure 2: Joining a group.

T-b raise exception

E

Acquire mutex

@ T retun(ialse)
]
v

CreateFile(GENE
RIC_READ,
OPEN_ALWAYS)

file sharing
2
open OK F: o F-»{ raise exception

T T
A 2 A 2

first := true first := false

I

CreateFile(GENE

RIC_READFILE_

SHARING_READ,

OPEN_EXISTING
)

l

Release mutex

l

return(irue)

April 2001

TGpFileGroup = class(TGpFileSynchroObject)

private
fgDelete: boolean;
fgHandle: THandle;
fglock : TGpFileMutex;
public

constructor Create(syncFile: string; deleteOnRelease: boolean = false);

reintroduce;
destructor Destroy; override;

function IsEmpty(timeout: DWORD; var emptyGroup: boolean): boolean;

function IsMember: boolean;

function Join(timeout: DWORD; var isFirstMember: boolean): boolean; overload;
function Join(timeout: DWORD): boolean; overload;
function Leave(timeout: DWORD; var wasLastMember: boolean): boolean; overload;
function Leave(timeout: DWORD): boolean; overload;

end; { TGpFileGroup }

if we are the last to leave the group.
Of course, we’d like the owner to
automatically leave the group if the
program crashes.

There are two versions of Join
and Leave: one with a simplified
parameter list. The simpler version
could be used when we don’t want
to know if we were the first or last
member of the group. IsEmpty
checks if the group is empty but
does not enter it. IsMember tells us if
we have already Joined the group.

The group uses two files, one for
group and another for an associ-
ated mutex. It can work with read-
only folders and files if both the
group and mutex files are created
in advance. To simplify the inter-
face, only the name of the group file
is required. The TGpFileGroup con-
structor will append _1ck to it and
use that for the mutex file name.

We will use file sharing to imple-
ment a group. Each process that is
a member of the group will keep
the group file open in read-only
share-read mode (which allows
other processes to open the group
file in the same mode). To check
whether the group is empty, we
open the file in deny-all mode. If
that fails, at least one process is
already a member of the group.
Because that requires opening and
closing the file, which is clearly not
an indivisible (atomic) operation,
we’ll use an associated mutex to
create a critical section, which
only one TGpFileGroup will be able
to enter at a time.

The complete flowchart for Join
is shown in Figure 2. First, check if
we are already a member of this
group. If so, treat this as a program-
mer error and raise the EGpFileSync
exception.

Next, acquire the mutex, return-
ing false on timeout. Now try to

The Delphi Magazine

0 Listing 7: File-based group.

open the file in read-only deny-all
create-if-not-exists mode.

If the file open failed because of a
sharing error, set a flag indicating
that we are not the first and go to
the next step. If the open failed
because of some other error, raise
an exception. If the file opened
without a problem, set a flag indi-
cating that we are the first in the
group and go to the next step.

Now close thefile, then reopen it
in read-only share-read mode.
Finally, release the mutex.

Leave is similar to Join except
that it works in reverse order: first
it leaves the group then checks if
the group is empty (by trying to
re-join it without sharing). Figure 3
shows the Leave flowchart.

First, check if we are not a
member of this group. If we are,
treat this as a programmer error
and raise the EGpFileSync excep-
tion. Next, acquire the mutex,
returning false on timeout.

Now close the handle to the
group file (the one that was
opened and stored in Join), and try
to open the file in read-only
deny-all, do-not-create mode.

If the file opened without a prob-
lem, closeit. If ‘delete on release’ is
set, try to delete it. Set a flag indi-
cating that we were the last in the
group, then go to the next step. If
the open failed because of a shar-
ing error, set a flag indicating that
we were not the last and go back to
the step where we closed the file
handle. If the open failed because
of some other error, raise an
exception.

Finally, release the mutex.

The implementation of IsEmpty
is similar to Join, except that it
closes the file as soon as it

53

F— raise exception

0

Acquire mutex

T retmn(false)

105

CloseHandle

I

CreateFile(GENE
RIC_READ,OPEN
_EXISTING)

create OK? T last:=true —>» CloseHandle

file sharing

oo F-! raise exception

delete on
release?

0

last := false Delete

Release mutex raise exception

l

return(true)

[Figure 3: Leaving a group.

program FileGroupApplication;
{$APPTYPE CONSOLE}
uses
SysUtils,GpFileSync;
var
grp: TGpFileGroup;
begin

grp := TGpFileGroup.Create('demo.grp');

try
if not grp.Join(5000) then
Writeln('Cannot join.")
else begin
tr

finally grp.Leave(5000) end;

end;
finally FreeAndNil(grp); end;
end.

determines whether we are the
first member of the group or not.

First, check if we are already a
member of this group. If we are, set
a flag indicating that the group is
not empty. Next acquire the mutex,
returning false on timeout.

Now try to open the file in
read-only, deny-all, create-if-not-
exists mode. If the open failed
because of a sharing error, set a
flag indicating that the group is not
empty and go to the next step. If the
open failed because of some other
error, raise an exception. If the file
opened without a problem, set a
flag indicating that the group is
empty, close the file, and go to the
next step 4.

Finally, release the mutex.

A group is not a synchronisation
tool per se. True, you can use it as
one (Join the group, use the
resource only if the group was
empty before joining, Leave the
group), but mostly you will want to
use it as a flag indicating that some
kind of activity is in progress. For
example, you can set an applica-
tion so that it joins the group when

0 Listing 8: TGpFileGroup demo,
Application part.

M
Writeln('Application running, press Enter to terminate...');
Readln;

0 Listing 9: TGpFileGroup demo, AdminUtil part.

program FileGroupAdmin;
{$APPTYPE CONSOLE}
uses
SysUtils, GpFileSync;
var
grp: TGpFileGroup;
grpEmpty: boolean;
begin

grp := TGpFileGroup.Create('demo.grp');
try
if not grp.IsEmpty(5000,grpEmpty) then

grpEmpty := false; // cannot check group status - assume not empty

if not grpEmpty then

WriteIn('At Teast one Application is running, be careful!');

finally FreeAndNil(grp); end;
end.

54

The Delphi Magazine

the app starts and leaves it when it
exits; then you set up an adminis-
tration utility for the same
application so it will warn you if
any client program is running. An
example of such an application/
administration pair is shown in
Listings 8 and 9. This also demon-
strates that a program leaves a
group if it is improperly termi-
nated. Run the application, kill it
(with ctr1-C), then run AdminUtil
and you’ll see how it correctly
determines the group is empty.

Ping!

We have one more traditional syn-

chronisation primitive to cover: an

event. It is not a resource alloca-

tion primitive, like a mutex and a

critical section (and in some ways

like a group), but a communication
primitive. With an event one pro-
cess can tell another that some-
thing has happened or that some
condition has occurred. For exam-
ple, a process can use an event to
inform another process that a data
acquisition phase has completed
and it should begin processing the
data. We say that the first process
signals the event and the second
one waits for it and resets it.
Basically, a file-based event is
not much more than a file. The

presence of a file represents a

signalled event and absence of the

file represents a reset, inactive,
event. The TGpFileEvent interface

(Listing 10) and implementation

are almost trivial (especially com-

pared to a mutex and a group) but
some things are worth noting:

O TGpFileEvent is not based on a
mutex and doesn’t use a mutex.

O The synchronisation file is not
deleted if the signalling process
crashes. If this doesn’t suit you,
use TGpFileMessage from the
next section.

O TGpFileEvent requires write ac-
cess to the synchronisation
folder, so the signalling process
must be able to create a file
there and the waiting process
must be able to delete it.

0O There is no ‘delete on release’
parameter. We already stated
the reason: deleting the syn-
chronisation file resets an
event.

Issue 68

Signalling an event is simple (List-
ing 11). TGpFileEvent.Signal first
creates the synchronisation file
(which must not exist beforehand,
hence the CREATE_NEW flag), with
read access (GENERIC_READ). If the
file already exists, Signal will
return true if the file was created,
false if the file already exists (the
event is already signalled) and will
raise the EGpFileSync exception for
other problems. In any case, it will
make sure that the handle to the
synchronisation file is closed at
the end.

This is different to what we’'ve
seen before and follows from the
fact that an event will typically be
reset in another process (which
must be able to delete the synchro-
nisation file, which therefore must
have no open handles).

Reset is simple, too. If the file
doesn’t exist, false is returned; if
the file exists, Reset will try to
deleteit and return true on success
or raise an exception on failure.
This looks simple, but you may
have noticed a possible problem:
what if Reset tries to delete a syn-
chronisation file after it was sig-
nalled but before the signalling
process managed to close its
handle?

The short answer is that this
cannot happen if you are using
TGpFileEvent correctly. If Reset is
called from the same thread as
Signal then there is no problem: it
is obvious that Signal has to close
the handle and return before the
same thread is able to call Reset. If
another thread or process is wait-
ing on this event, it should always
use WaitFor and call Reset only
after WaitFor indicates that the
event is in a signalled state. And
WaitFor (as you'll see in a moment)
will make sure that the synchroni-
sation file is not open before
returning a ‘signalled’ result.

Of course, if you call Reset from a
different thread or process and
forgot to call WaitFor first, you may
receive an EGpFileSync exception,
which will kindly remind you of the
error of your ways.

We still have to explain WaitFor,
which is the toughest of the three
methods and is implemented with
a loop, not completely unlike the

April 2001

TGpFileEvent = class(TGpFileSynchroObject)

public

constructor Create(syncFile: string); reintroduce;

function Reset: boolean;
function Signal: boolean;

function WaitFor(timeout: DWORD; reset: boolean): boolean;

end; { TGpFileEvent }

O Listing 10: File-based event.

function TGpFileEvent.Signal: boolean;
var

h : THandle;

err: DWORD;
begin

h := CreateFile(PChar(SyncFile),GENERIC_READ,O,ni1,CREATE_NEW,

FILE_ATTRIBUTE_NORMAL,0);

if h = INVALID_HANDLE_VALUE then begin

err := GetlLastError;

if err = ERROR_FILE_EXISTS then
Result := false

else

raise EGpFileSync.CreateFmt(SCannotCreateFile,

[SyncFile,SysErrorMessage(err)]);

end else begin
CloseHandle(h);
Result := true;

end;
end; { TGpFileEvent.Signal }

function TGpFileEvent.Reset: boolean;
begin
if not FileExists(SyncFile) then
Reset := false
else begin

if Windows.DeleteFile(PChar(SyncFile)) then

Result := true
else

raise EGpFileSync.CreateFmt(SCannotDeleteFile,
[SyncFile,SysErrorMessage(GetLastError)]1);

end;
end; { TGpFileEvent.Reset }

one in TGpFileMutex.Acquire or
TGpFileGroup.Join. WaitFor takes
two parameters, timeout (in milli-
seconds, 0 and INFINITE are sup-
ported) and reset (the event
should be automatically reset).

First, if the event is to be auto-
matically reset (ie the synchronisa-
tion file has to be deleted), set
FILE_FLAG_DELETE_ON_CLOSE. The
operating system will make sure
the file is deleted after we’re done
with it.

Next, try to open the file in read-
only do-not-create-if-exists mode.
If the open failed because of a shar-
ing error, go to the next step. If the
open failed because of some other
error, raise an exception. If the file
opened without a problem, the
event is signalled: call CloseHandle
to close the open file handle (this
will delete the synchronisation file
if required) and return true.

Now check if the allotted time
has elapsed. If so, return false.

Finally, sleep for RetryDelay
milliseconds, then return to the
previous step.

Demonstrating the use of
TGpFileEvent are the Ping and Pong

The Delphi Magazine

0 Listing 11: Implementation
of TGpFileEvent.Signal and
TGpFileEvent.Reset.

applications on the companion
disk. Try starting them in a differ-
ent order to see how they behave.
You can even start more than one
Pong and then check if each Ping
will always trigger exactly one
Pong (it will, I promise).

You've Got Mail

Now prepare for something com-
pletely different. All that [was talk-
ing about up till now has only been
a preparation, an exercise in dis-
tributed thinking. Now I'll show
you something more complicated:
a file-based SendMessage.

It doesn’t sound tough? Trust
me, it is. The reason is simple: we
don’t want the receiver to receive
amessage if the sender died during
the send process. Without that
requirement, file messaging would
be simple: the sender would write
a message into a file, the receiver
would read the data from the file
and then delete it. Simple, yes, but
that is PostMessage: one process

55

posts data and forgets about it. In
SendMessage, we want to know that
the receiver got the message. Even
more, we want the receiver to
know that the sender is still alive
and waiting for the receiver to pick
up the message. Impossible? Not
with a little trickery.

Obviously, TGpFileMessage (see
Listing 12) requires write access to
the synchronisation folder, as it
will transfer data from one process
to another using files. It will also
need three additional files for the
helper synchronisation objects:
one for TGpFileMutex and two for
TGpFileGroup. They will use the
suffixes _1ck, _grp, and _grp_lck

Another fact worth stating is that
TGpFileMessage does not support
multicasting (sending one mes-
sage to multiple recipients)
because that would complicate it
beyond salvation. There must be
just one sender and one receiver.

To understand the Send/Receive
mechanism, you should keep in
mind that Send waits for Receive to

0 Figure 4: Sending a message.

Acquire mutex

T—b raise exception
=

Join Group

2
T» Delete
F

TGpFileMessage = class(TGpFileSynchroObject)

private

fmLock : TGpFileMutex;
fmGroup: TGpFileGroup;
public

constructor Create(syncFile: string); reintroduce;

destructor Destroy; override;

function Receive(timeout: DWORD; var msg: pointer; var msgSize: integer):

boolean;

function Send(timeout: DWORD; msg: pointer; msgSize: integer): boolean;

end; { TGpFileMessage }

pick the message up and only then
(or if it times out, of course) does it
return. Send and Receive are meant
to be used in tightly coupled pro-
cesses. If youneed a more mailbox-
like solution, you can easily build
one with a file and a mutex. Mail-
boxes can be used in many differ-
ent ways so it is probably best to
make one that is tailored for your
application.

The sending process is split into
two parts. The Send method first
creates a message and then waits
for the message to be picked up.
Receiving is also a two-part opera-
tion: the first waits for the message
to appear, the second part reads it.

[already mentioned that the
Send/Receive mechanism uses
additional mutex and group

F———>» retumn(true) f——

Release mutex

deleted? F» raise exception

. L

F—»{ raise exception

return(false) 9

¥

I—b Leave Group

T—b raise exception %
E
Y

CreateFile(GENE é
RIC_READ+GEN

Acquire mutex

1

ERIC_WRITE,
CREATE_ALWAY

created OK? F—»| raise exception

WriteFile é

raise exception

CloseHandle é

’$

4

O

5

(e)]

@ TH raise exception

Release mutex

6

The Delphi Magazine

0 Listing 12:
File-based messaging.

primitives. The mutex is used to
make some parts of Send and
Receive atomic and the group is
used to indicate that the sender is
still alive: if Receive finds a waiting
message and an empty group, it
will know that the sender has died
and will ignore the message.

This is the algorithm for Send,
with some simplifications (the full
implementation is shown in Figure
4):

Sending

1. Acquire the mutex: message
creation should be atomic. If the
operation fails, abort.

2. Join the group to indicate that
active sender exists. The group
should be empty before joining, if
it is not, there is another sender:
abort.

3. Try to create the message file
with read-write access and the
CREATE_ALWAYS flag (overwrite the
file if it exists). If that fails, some-
thing is terribly wrong (eg access
to the synchronisation file is not
allowed): abort.

4. Write message to the file and
close it.

Waiting

5. Check if the message exists. If
not, the receiver picked up the
message, go to step 10.

6. Check if the allotted time has
elapsed. If so, go to step 10.

7. Release the mutex. We must
give Receiver some chance to read
the message.

8. Sleep for RetryDelay millisec-
onds.

9. Acquire the mutex (abort if
Acquire fails) and go to step 5.

10. Leave the group.

11. Release the mutex.

Asyou can see, Send is a member of
the group all the time (to indicate
that there is an active sender) and
keeps the mutex acquired most of

Issue 68

the time. The mutex is released
periodically in the second part of
the algorithm to allow Receiver to
read the message. Because this
also allows another Sender to start
sending using the same synchroni-
sation file (indicating a program-
mer error: we assumed there is
only one sender and one receiver,
remember), the sender must check
that the group is empty before join-
ing it, that it is the only sender.

Receive works in a similar
two-part manner (the full imple-
mentation is shown in Figure 5):

Waiting

1. Acquire the mutex: message
waiting must be atomic.

2. Check if the group is empty.

3. If the group is empty, either
the sender has died or the receiver
was started before the sender. If
the group is not empty, a sender is
waiting for us to pick up the mes-
sage, so go to step 7.

4. Release the mutex to allow
the sender to start sending the
message.

5. Check if the allotted time has
elapsed. If it has, return false.

6. Sleep for RetryDelay millisec-
onds, then return to step 1.

Reading

7. Open the message file with
read access and only if it exists go
on to read a message. If the file
does not exist, go to step 4 (a false
alarm: there is no message, return
to the waiting phase).

8. Close the message file and
delete it.

9. Leave the group.

10. Release the mutex.

The second part of step 7 (if the file
does not exist...) requires further
explanation. At first glance it is a
complete nonsense: if the group is
not empty and the mutex is
released then surely the sender
certainly has already created the
message and the receiver can read
it? Yes, that is true, if we send only
one message. It is not true if
the sender keeps on sending
messages.

Imagine two processes. Process
A will send two messages and pro-
cess B will receive them. Because
processes A and B run at the same
time, it is possible that the actions
will execute in the following order:

April 2001

O

Figure 5: Receiving
a message.

Process A prepares
the first message and
goes to sleep (send:
step 8).
At that moment, the
group has one mem-
ber (A) and the mutex
is not acquired.
Process B now reads
the first message and
deletes the message
file. -
Process A is still
asleep.

Process B now starts
reading the second
message.

The group is not
empty and the mutex
is released, so it can
proceed immediately
to step 8. All seems well, but the
message file does not exist
because the message was not
sent yet.

Process B now goes to sleep,
process A awakens, sends the
message and process B
receives it. All ends well.

Again, | must admit that Send and

Receive

are very complicated,

especially because of the two-part
implementation and the constant
acquiring and releasing of the
mutex. If you want to really under-
stand them, study the algorithms
above, Figures 4 and 5, and the
source code.

If you only want to wuse

TGpFileMessage, take a look at the
Send and Receive applications on
the companion disk.

The Ultimate Challenge

Now that you’ve seen how compli-
cated it can be just to send a
message, [can explain why a sema-
phore is hard to write: so hard that
[have not yet implemented it and I
doubt very much that I will.

Let’s summarise what a sema-

phore does. What follows is quite a
simplification and not a very good
definition of a semaphore; for
better definition, see the refer-
ences | mentioned at the begin-

ning. A

semaphore basically

The Delphi Magazine

raise exception

CloseHandle

return(false) raise exception

.

protects a counted resource. A
semaphore knows how many
clients are using it and allows new
clients to attach only if less than
some maximum value of clients
(specified when the semaphore is
created) are using it. When the
semaphoreis full, new clients must
wait for old clients to stop using it
before they can gain access.

This looks relatively simple and
easy to implement, but there is a
problem: unstable computers.
Processes can die. Hardware may
malfunction. Because of that, good
file-system synchronisation primi-
tives must handle sudden disap-
pearances. All of the primitives
discussed so far are very well
behaved: they handle process and
computer crashes quite well. But it
is not so easy to write a well-
behaved semaphore. I have tried
several approaches and they all
backfired (usually when I thought I
had got it working at last!).

My current favourite idea is to
use multiple files for each sema-
phore, as many files as the
semaphore’s maximum count.
Each process can then allocate a
semaphore by locking those files.
If a process crashes, all the locked
files will be released and other pro-
cesses will be able to allocate
them. But, as I don’t often use

57

TGpFileSWMR = class

private
fswmrGroup : TGpFileGroup;
fswmrMutexl : TGpFileMutex;
fswmrMutex2 : TGpFileMutex;
fswmrSyncFileBase: string;
public

constructor Create(syncFileBase: string; deleteOnRelease: boolean = false);

reintroduce;
destructor Destroy; override;

function DoneReading(timeout: DWORD): boolean;

procedure DoneWriting;
function IsReading: boolean;
function IsWriting: boolean;

function WaitToRead(timeout: DWORD): boolean;
function WaitToWrite(timeout: DWORD): boolean;
property SyncFile: string read fswmrSyncFileBase;

end; { TGpFileSWMR }

0 Listing 13: File-based Single-Writer-Multiple-Reader guard.

semaphores, there is little chance
of a TGpFileSemaphore appearing in
public from my keyboard.

One Writer, Many Readers

To show how powerful file-based
synchronisation primitives are, I
will build a single-writer-multiple-
reader guard (SWMR for short, see
Listing 13) synchronisation class
with two mutexes and one group.

SWMR is a synchronisation
primitive that allows readers and
writers to work with a shared
resource, like a database. Multiple
readers can access the shared
resource at the same time, but
there can only be one writer. If
thereis an active writer, noreading
is allowed, and noone gets write
access if there’s an active reader.

SWMR methods are divided into
two subsets: one used by readers
and one by writers. WaitToWrite
tries to acquire write access and
DoneWriting releases it. Similarly,
WaitToRead tries to acquire read
access and DoneReading releases it.
Because of implementation issues,
DoneReading also requires a time-
out parameter. IsReading and IsWr-
iting are simple helper functions
that return the current status.

To implement exclusive write
access, the writer has to acquire a
mutex (to prevent more than one
process at a time getting write
access). Before that, the writer has
to check no readers are active. To
prevent synchronisation prob-
lems, checking and acquiring must
be atomic so we’ll wrap them in a
critical section, maintained by the
second mutex.

To implement multiple read
access, each reader will join a

58

group. Before joining, the reader
must check if the writer’s mutex is
acquired (indicating that the
writer is active and reading is not
permitted). To prevent synchroni-
sation problems, checking and
joining must be atomic, so we’ll
wrap them in a critical section,
maintained by the same mutex as
in the writer’s case.

The WaitToWrite algorithm is as
follows. First, acquire the ‘check’
mutex. See if the group is empty: if
so, acquire the ‘write’ mutex. Next
release the ‘check’ mutex. If the
‘write’ mutex is acquired, return
true. Now check if the allotted time
has elapsed: if so, return false.
Next sleep for RetryDelay millisec-
onds, thenreturn to the beginning.

The WaitToRead algorithm is as
follows. First, acquire the ‘check’
mutex. See if the ‘write’ mutex is
acquired: if not, join the group.
Now release the ‘check’ mutex. If
we are a member of the group,
return true. Next check if the allot-
ted time has elapsed: if so, return
false. Now sleep for RetryDelay
milliseconds, then return to the
beginning.

DoneWriting and DoneReading are
equally trivial: the former releases
the ‘write’ mutex and the latter
leaves the group. That’s all.

The Delphi Magazine

Monitoring

To sugar all this | have created two
monitoring components that can
ease the use of most common syn-
chronisation primitives: a mutex
and a group. Both components use
a background thread to monitor
the synchronisation primitive and
then translate changes into
events. TGpFileMutexMonitor fires
an OnAcquired event when some
other process acquires the speci-
fied mutex and OnReleased when
the mutex is released. TGpFile-
GroupMonitor behaves in a similar
manner, except that it provides
the events OnEmpty and OnNotEmpty.
Both components also offer quick
access to the mutex and group
methods (Acquire, Release, Join
and Leave), so you can also use
them as a normal mutex or group.

If you want to know how these
components work, check the
source on the disk, where you’ll
also find a demonstration program
testGpFileSyncMon.dpr.

The GpFileSync primitives are
useful tools as they are pro-
grammed at the moment. But 'm
expecting Kylix to open a whole
new world of inter-process com-
munication, where GpFileSync and
its Kylix equivalent will be really,
reallyimportant. When I manage to
port it, of course. But more on that
later: I'll be back!

Primoz Gabrijelcic has already
Joined the TGpFileGroup of
Kylix-waiting processes. Expect
TGpFileEvent or even TGpFile-
Message when he Acquires it. In
the meantime, he will try to
respond to all mail sent to
gabr@17slon.com. You may reuse
the code that accompanies this
article even if you are completely
unsynchronised.

Issue 68

	A Decent File Server
	A File-Based Mutex
	Mutex Explained
	Critical Section
	Group: A Global Pool
	Ping!
	You’ve Got Mail
	The Ultimate Challenge
	One Writer, Many Readers
	Monitoring

